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The theory of quantum fluid dynamics (QFD) helps nanotechnology engineers to under-
stand the physical effect of quantum forces. Although the governing equations of quantum
fluid dynamics and classical fluid mechanics have the same form, there are two numerical
simulation problems must be solved in QFD. The first is that the quantum potential term
becomes singular and causes a divergence in the numerical simulation when the probability
density is very small and close to zero. The second is that the unitarity in the time evolution
of the quantum wave packet is significant. Accurate numerical evaluations are critical to the
simulations of the flow fields that are generated by various quantum fluid systems.

A finite volume scheme is developed herein to solve the quantum hydrodynamic equa-
tions of motion, which significantly improve the accuracy and stability of this method.
The QFD equation is numerically implemented within the Eulerian method. A third-order
modified Osher–Chakravarthy (MOC) upwind-centered finite volume scheme was con-
structed for conservation law to evaluate the convective terms, and a second-order central
finite volume scheme was used to map the quantum potential field. An explicit Runge–
Kutta method is used to perform the time integration to achieve fast convergence of the pro-
posed scheme.

In order to meet the numerical result can conform to the physical phenomenon and avoid
numerical divergence happening due to extremely low probability density, the minimum
value setting of probability density must exceed zero and smaller than certain value. The
optimal value was found in the proposed numerical approach to maintain a converging
numerical simulation when the minimum probability density is 10�5 to 10�12. The normal-
ization of the wave packet remains close to unity through a long numerical simulation and
the deviations from 1.0 is about 10�4.

To check the QFD finite difference numerical computations, one- and two-dimensional
particle motions were solved for an Eckart barrier and a downhill ramp barrier, respectively.
The results were compared to the solution of the Schrödinger equation, using the same
potentials, which was obtained using by a finite difference method. Finally, the new
approach was applied to simulate a quantum nanojet system and offer more intact theory
in quantum computational fluid dynamics.

Crown Copyright � 2008 Published by Elsevier Inc. All rights reserved.
1. Introduction

Although the conventional description of quantum mechanical systems uses Schrödinger’s equation, an alterative
equivalent formalism is quantum fluid dynamics (QFD) [1–11]. In these representations, quantum mechanics is described
in terms of a density field and a velocity field, which jointly obey the usual mass and momentum conservation equation
2008 Published by Elsevier Inc. All rights reserved.
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of hydrodynamics for a compressible fluid with a particular constitutive law. The quantum hydrodynamic equations are sim-
ilar to classical hydrodynamics, except for the presence of an additional term called the ‘‘quantum potential’. The quantum
potential couples the quantum trajectories and gives rise to all quantum effects such as tunneling, zero point energy, and
interference. This approach is intuitively attractive since the quantum potential and force appear on equal footing with
the classical potential and force in the equations of motion.

Despite the intuitively attractive features of this formulation, practical problems arise in implementing a quantum tra-
jectory based approach, due to difficulties in computing an accurate quantum potential. In particular, quantum potential de-
pends on the local curvature of the wave function and can often become singular when nodes form in the wave function or
when the wave function is sharply peaked. These inherent properties make an accurate numerical calculation of quantum
potential and force very difficult, especially in scattering problems.

The QFD formulation requires solving a set of nonlinear partial differential equations. Classical fluid dynamics can be de-
scribed in terms of equivalent Eulerian and Lagrangian representations. In recent years, Wyatt et al. [12–14] developed a
numerical methodology for solving the deBroglie–Bohm hydrodynamic equations called the quantum trajectory method
(QTM) [15,16]. The QTM has been applied to many model problems, including one- and two-dimensional barrier tunneling
problems. In this approach, the probability fluid is discretized into fluid elements and the hydrodynamic equations are
solved using a Lagrangian frame of reference in which the grid moves with the fluid elements. A moving weighted least
squares (MWLS) approach is implemented to calculate the various functions and derivatives that appear in the equations
of motion [17–19]. Unfortunately, significant computational problems arise when the QTM is adopted to integrate the hydro-
dynamic equations of motion. In particular, the interparticle spacings become highly non-uniform with time, such that, some
particles move close together and some move far apart. Significant numerical errors accumulate because of the difficulties in
evaluating accurate numerical derivatives on a non-uniform grid. Also, the quantum potential is inversely proportional to the
magnitude of the wave function and may become singular when the magnitude approaches zero (near nodes). The singular-
ities caused by node formation are usually associated with the interference effects in the reflected part of the wave packet
and are most problematic in barrier scattering problems. The singularities cause additional numerical errors which often
cause numerical instabilities. A variety of regridding techniques and different frames of reference, such as an arbitrary
Lagrangian–Eulerian (ALE) frame, can be adopted the numerical errors and the propagation of the wave packet, and extend
the program of the wave packet can to longer times. However, the singularities in the quantum potential eventually cause
the numerical calculations to become unstable regardless of frame of reference and the smallness of the interparticle spac-
ings or time steps. An accurate treatment of these interference effects is required to describe many important chemical reac-
tion dynamics processes, including, resonance, and interference effects between the reactive and nonreactive contribution to
the cross sections in reactions that involve many identical nuclei. Inelastic scattering also depends on an accurate treatment
of the reflected wave packet [20–23].

The direct Euler/Navier–Stokes calculation is widely applied in recent decades to analyze unsteady systems. Many success-
ful methods employ high-order upwind schemes with a flux limiter function to improve numerical stability and obtain more
accurate computed results. The inherently dissipative properties of the upwind schemes and limiter functions prevent the
generation of the oscillations properties around the discontinuities and therefore promote the capture of the probability den-
sity wave. The basis of the finite volume method is that all of the physics must satisfy the principles of conservation law. In the
finite volume method, volume integrals in a partial differential equation that contain a divergence term are converted to sur-
face integrals, using the divergence theorem. These terms are then evaluated as fluxes at the surfaces of each finite volume.
Since the flux that enters a given volume equals that which leaves the adjacent volume, these methods are conservative.

This study presents a new scheme for solving quantum hydrodynamic equations of motion, which specifically addresses
that are the problems associated with the reflected part of the wave packet. A control volume-based technique is used to
convert the governing equations into algebraic equations that can be solved numerically and the monotone upwind-centered
schemes for conservation laws (MUSCL) method biased TVD scheme (Osher–Chakravarthy scheme) [24,25], based on Roe
splitting, [26] is employed to interpolate the changes in the cell properties that occur during the flow simulation. Addition-
ally, the Osher–Chakravarthy (OC) scheme reduces to first-order spatial accuracy at the extreme points, seriously reducing
the total accuracy. Therefore, the TVD characteristic of the OS scheme must be modified to obtain better resolution, and a
third-order modified Osher–Chakravarthy (MOC) [27] upwind scheme with limiter functions was constructed to evaluate
the convective terms, a second-order central finite volume scheme was used to map the field of the quantum potential pro-
viding an efficient means of eliminating spurious numerical oscillations, and an explicit Runge–Kutta time integration meth-
od [28] for time descritization.

Section 2 derives the relevant set of coupled differential equations. Section 3 discusses the numerical approach in detail.
In Section 4, this approach is applied to the scattering of a wave packet from a repulsive external potential barrier and the
unitarity of the time evolution of the quantum wave packet is investigated. The accuracy of these results in quantified by
comparing them to those based on the Crank-Nicholson algorithm. Section 5 draws conclusions.
2. The Quantum hydrodynamic equations of motion

Let wð~r; tÞ be the wave function representing the state of a one-particle system at any given time t. The wave function is a
solution of the Schrödinger equation [29]:
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Vð~rÞ is the external potential energy surface, and~r ¼ ðx; y; zÞ.
The quantum fluid dynamical formulation of the Schrödinger equation is obtained by expressing the Schrödinger wave

function as wð~r; tÞ ¼ q1=2 expðiSð~r; tÞ=�hÞ, where q and S are real. Substituting this into the time-dependent Schrödinger equa-
tion and separating into the real and imaginary parts, we get a set of coupled difference equations
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m is the mass. The velocity is defined as u = (u,v) =rS/m. With the exception of the quantum potential these equations are
similar to what is found in the classical theory of fluid dynamics. Eq. (2) is recognized as the continuity equation and Eq. (3) is
the quantum Hamilton–Jacobi equation expect for the last term involving the quantum potential. All quantum effects are
due to the quantum potential
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Chiu [6,7] defined the quantum diffusion velocity VD as
VD ¼
J
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� �
r ln q ¼ �D

rq
q

ð5Þ
Here J is the diffusion flux of probability fluid. In this context, the quantity �h/2me is identified as the quantum diffusion con-
stant D. Note that the first term of the quantum potential is a result of taking divergence of, the quantum diffusion velocity.
This term may also be written as,
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This expression can be interpreted as the work due to quantum dilatational of the diffusion velocity.
Secondly, the quadratic term (⁄2/4me)(1/2)r(ln q) � r(lnq) represents the kinetic energy associated the quantum diffu-

sive velocity. This can clearly be seen in the following expanded version
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In summary then, the quantum potential consists of a dilatation and a kinetic energy associated with the diffusion of the
non-uniform probability density of quantum fluid flow, given by
Qð~r; tÞ ¼ �h2
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M is dilatational energy and K is quantum kinetic energy. The quantum potential Qð~r; tÞ can also be expressed in the follow-
ing two alternative forms. All the expressions of the quantum potential are equivalent to each other.
Qq=2 ¼
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q
� 1

2
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Thus the same and similar numerical methods may be employed as used in classical computational fluid dynamics.

3. Numerical formulations

This work presents finite volume method for simulating quantum hydrodynamic equations of motion, while dealing with
the problems associated with the reflected part of the wave packet, as described below.

3.1. Governing equations of quantum hydrodynamics

The numerical schemes discussed are based on the MUSCL type. Rewrite Eqs. (2) and (3) in integral form as
o

ot

ZZZ
X

WdXþ
Z Z

C
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X
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In which X is the control volume, C is the boundary of V and ~n is the outer unit normal. The dC is the surface area of the
control volume. W represents the vector of conservation variables. The second term in the left-hand side of the Eq. (10) is the
flux vector and the right-hand side of the Eq. (10) is the quantum flux vector.

3.2. Space discretization: finite volume formulation

3.2.1. Treatment of convection terms
The computation procedure starts by discretizing the domain of interest into quadrilaterals labeled as Kij. The subscripts i

and j label the direction. In each hexahedron Kij, flow variables are stored at the barycenter Cij and the flow conservation is
enforced on the boundary surface oKij. In this section, assume that the grid mesh is geometrically time invariant and the flow
variables stored at the barycenter Cij are a volume average of the integrated flow variables in the hexahedron Kij. Flow vari-
ables are then computed at the barycenter of each quadrilateral. The solutions at the boundaries of the quadrilaterals are
matched up imposing the flow conservation of convective terms across the boundaries. A third-order upwind finite volume
method is used for the convection terms and the central finite difference method is used for the quantum potential terms.
Then in each quadrilateral, Kij, Eqs. (2) and (3) can be written as
dWij

dt
¼ � 1

Aij

I
Cij

ðF;GÞ � ndl� Hij ð11Þ
where Aij is the area of Kij, and Cij = oKij

To evaluate the first term of the right-hand side of Eq. (11), we sum all the flux vectors on the four edges of
I
C
ðF;GÞ � ndl � hi�1=2;j j ei�1=2;j j þ hiþ1=2;j j eiþ1=2;j j þ hi;j�1=2 j ei;j�1=2 j þ hi;jþ1=2 j ei;jþ1=2 j ð12Þ
Here hi+1/2,j is the numerical approximation for the flux associated with the edge ei+1/2,j and jei+1/2,jj is the length of the edge
ei+1/2,j. In order to evaluate hi+1/2,j using an upwind scheme, it is necessary to have two fluid dynamic states, WR

iþ1=2;j and
WL

iþ1=2;j. They are interpolated from the cell-centered states by means of the third-order monotonic upstream schemes for
conservation laws (MUSCL) scheme [24,25]. They can be expressed as
WR
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where the non-uniformity of cell sizes is taken into account in ai,j, bi,j, ci,j. Let li,j represent the width of cell Ki,j in the i direc-
tion; then
ai;j ¼
li;j

liþ1;j þ 2li;j þ li�1;j

bi;j ¼
li;j

li;j þ liþ1;j

ci;j ¼
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ð15Þ
for a uniform mesh, they become
ai;j ¼
1
4
; bi;j ¼

1
2
; ci;j ¼ 1
Eqs. (13) and (14) reduces to the standard form described by Osher and Chakravarthy [25], then Eqs. (13) and (14) becomes
WR
iþ1=2;j ¼Wiþ1;j �

1
4
ð1þ jÞðWiþ1;j �Wi;jÞ þ ð1� jÞðWiþ2;j �Wiþ1;jÞ
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The value of j determines the type of difference scheme: j = �1 yields a one-sided upwind scheme; j = 1 yields a central
difference scheme. The spatial accuracy at local extrema is first-order. Away from the local extrema and steep gradients,
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the interpolation polynomials of Eqs. (16) and (17) yields a scheme of third-order spatial accuracy for j = 1/3. To capture the
singularities of the probability density precisely, the computation must by performance using a high-order accuracy scheme.
In this study, j = 1/3 is used. This TVD scheme is formally third-order in space with j = 1/3 away from the local extrema.

However, a number of numerical singularities exist at certain critical points. The OC (Osher and Chakravarthy) scheme
reduces to first-order spatial accuracy at those extreme points, and significantly reducing the total accuracy. Therefore
the TVD characteristic of the OC scheme needs to be modified to improve resolution.

In this scheme WR and WL obtained in Eqs. (16) and (17) are stabilized using a local projection limiter
WR;m
iþ1=2;j ¼Wiþ1;j �min modðWiþ1;j �WR

i;j;Diþ1=2Wi;j;Diþ1=2Wiþ1;jÞ ð18Þ
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iþ1=2;j ¼Wi;j þmin modðWL

iþ1=2 �Wi;j;Diþ1=2Wi;j;Diþ1=2Wi�1;jÞ ð19Þ
Here
min modða; b; cÞ ¼
minða; b; cÞ a; b; c P 0
maxða; b; cÞ a; b; c 6 0
0; otherwise

8><
>:

Diþ1=2Wi;j ¼Wiþ1;j �Wi;j

ð20Þ
Similarity, for WL
i;jþ1=2 and WR

i;jþ1=2 at the edge ei,j+1/2. Then the numerical flux at the interface is written as
hiþ1=2;j ¼ h WL
iþ1=2;W

R
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Here, the local Lax–Friedrichs monotone method is used to define the value ai+1/2,j as:
aiþ1=2;j ¼maxðj UL
n j; j U

R
n j; eÞ

e ¼ 0:01 � 0:001
ð22Þ
Here Un = ui+1/2,j � nx + vi+1/2,j � ny is the contravariant velocity normal to the edge ei+1/2,j.
Theoretically, the Modified Osher and Chakravarthy scheme (MOC scheme) is very similar to the OC scheme. However,

the MOC scheme is simpler and yielded better numerical results herein than the OC scheme.

3.2.2. Treatment of quantum terms
The central finite difference method is used to evaluate the quantum potential term. For simplicity, the formula in the

Cartesian grid is
r2f ¼
fiþ1;j � 2f i;j þ fi�1;j

Dx2 þ
fi;jþ1 � 2f i;j þ fi;j�1

Dy2 ð23Þ

fx ¼
fiþ1;j � fi�1;j

2Dx
; f y ¼

fi;jþ1 � fi;j�1

2Dy
ð24Þ
3.3. Time integration: Runge–Kutta time integration

An explicit two-order Runge–Kutta time integration [28] is used to discretize the remaining time derivative in Eq. (11).
We define the residual as:
Resij ¼ �
1
Aij

I
ðF;GÞ � ndl� Hij ð25Þ
Then, Eq. (10) becomes
dWij

dt
¼ Resij ð26Þ
The two-order Runge–Kutta time integration is as follows:
W ð0Þ
ij ¼Wn

ij ð27aÞ

W ð1Þ
ij ¼W ð0Þ

ij þ DtResijðW ð0ÞÞ ð27bÞ

W ð2Þ
ij ¼W ð1Þ

ij þ DtResijðW ð1ÞÞ ð27cÞ

W ðnþ1Þ
ij ¼ 0:5ðW ð0Þ

ij þW ð2Þ
ij Þ ð27dÞ
we define
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CFLi;j ¼
Dti;jCmax

j ei;jjmin
ð28Þ
where jei,jjmin = min(jei+1/2,jj,jei�1/2,jj, jei,j+1/2j,jei,j�1/2j), and
Ciþ1=2;j ¼max
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðUL

nÞ
2 þ b�

q
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðUR

nÞ
2 þ b�

q� �
;

Un ¼ uiþ1=2;j � nx þ v iþ1=2;j � ny

Cmax ¼maxðCiþ1=2;j;Ci�1=2;j; Ci;jþ1=2;Ci;j�1=2Þ ð29Þ
At this moment, the entire scheme is stable for Courant number CFLi,j 6 1.
In the following section, validations are presented to evaluate the accuracy of the flow solver that was described in the

preceding section. To demonstrate the capability of the present solver to capture one- and two- dimensional particle
Fig. 1. Eckart potential distribution.

Fig. 2. Downhill ramp potential distribution.
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motions, the numerical results in each case in which an external potential is present, are compared with those obtained by
directly solving the Schrödinger equation.

3.4. Boundary condition

Several boundary conditions are given as following. The flow filed is similar to external flow, so the far field boundary
condition is needed. The probability density and velocity is interpolated from the computational domain. The other proba-
bility density and velocity are given.

4. Applications

A. External potential barrier and unitarity

In the section, we will consider the scattering of a one-dimensional Gaussian wave packet from a repulsive Eckart barrier
and downhill ramp barrier.

The Eckart potential (Fig. 1) is given by
Table 1
Parame

V0 (bar
b
Energy
m (mas
x0 (initi
xb (the
u0 (init
dx
dt
VðxÞ ¼ V0VPðxÞ ¼ V0sech2½aðx� xbÞ� ð30Þ
The other external potential is downhill ramp potential (Fig. 2) as follow
VðxÞ ¼ V0
1

1þ e�2:5ðx�1:0Þ ð31Þ
where V0 is the barrier height, a = 0.4 determines the width, and xb is the location of the barrier maximum. The mass used in
the calculations is m = 2000 a.u. The initial Gaussian wave packet at t = 0 is given by
wðx; 0Þ ¼ 2b
p

� �1=4

e�bðx�x0Þ2 eikðx�x0Þ ð32Þ
ters for 1D wave packet motion with Eckart potential.

rier height) 0.992 (eV)
4a�2

0 ða0 is Bohr radius)
0.8 (eV)

s) 2000 (a.u), 1 (a.u) = 9.109 � 10�31 kg
al wave packet center) 2.0a0

location of the barrier maximum) 7.0a0

ial velocity) 0.00542626
0.03
0.05

Fig. 3. A mesh-contour plot of 2D downhill ramp potential.



Fig. 4. Probability density of free particle that is moving under Eckart potential at several time steps for E = 0.8 eV. The red lines represent the numerical
solution of Schrödinger equation and black lines represent numerical solution using the QFD formulation. (For interpretation of the references in colour in
this figure legend, the reader is referred to the web version of this article.)
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where b is the width parameter, x0 is the center of the wave packet, and k determines the initial phase S0 = �hk(x � x0) and
flow kinetic energy E = �h2k2/(2m). The initial conditions for the velocity are give by u0 = (1/m)oS0/o x = �hk/m. The one dimen-
sion Schrödinger equation including the external potential is
Table 2
Parame

V0 (bar
b
Energy
m (mas
x0 (initi
u0 (init
dx
dt
i�h
ow
ot
¼ � �h2

2m
o2w
ox2 þ V0VpðxÞw ð33Þ
We select the following reference quantities as characteristic quantities of interest
�x ¼ x
a0
; �y ¼ y

a0
; s ¼ t

T0
; �u ¼ u

U
; �v ¼ v

U
; U ¼ a0

T0
where T0 is a characteristic time, a0 is the Bohr radius, U is the characteristic velocity.
With the above, the time-dependent Schrödinger equation may be written in a non-dimensional form as
i
ow
os
¼ � T0�h

2m
1
a2

0

o2w
o�x2 þ

T0V0

�h
Vpð�xÞw ð34Þ
The fluid dynamics formulation for this one dimension problem is
oq
os
þ oðq�uÞ

o�x
¼ 0 ð35Þ

oq�u
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þ oðq�u2Þ

o�x
� �h2

2m2
aa2

0u2
c

q
o

o�x
q�1=2 o2q1=2

o�x2

" #
þ 1

mu2
c
q

o

o�x
Vpð�xÞ ¼ 0 ð36Þ
The initial wave packet parameters for the Eckart potential model are listed in Table 1.
Fig. 4 plots the time evolution of the amplitude of wave packet scattering from an Eacker potential (E = 0.8 eV) at times

6.05, 48.4, 73.6, 96.8, 121, and 145.2 (fs). As the wave packet moves to the right, it scatters from the Eckart barrier centered at
r = 7a0. At t = 48.5 fs the wave packet is tunneling through the barrier and is beginning to split into a transmitted part and a
reflected part. At 73.6 fs, the splitting is nearly complete and the split wave packets are moving to the right and left. Inter-
ference effects become evident in the reflected part of the wave packet. The transmitted part of the wave packet is ‘‘Gauss-
ian-type.” At t = 96.8 fs, the interference effects have become more pronounced than before and a series of ripples have
formed behind the mail peak of the reflected wave packet. The transmitted and reflected parts of the wave packet continue
to move apart and broaden in interval of 121 fs and 145 fs, respectively. The calculations are quite stable and were made
until t = 220 fs.

Table 2 presents the initial values of the wave packet parameters for use in the downhill ramp potential model. Fig. 5 plots
the time evolution of the amplitude of the wave packet that is scattered from an downhill ramp potential (E = 0.8 eV) at
times 6.05, 48.4, 73.6, 96.8, 121, and 145.2 (fs). The presented solution agrees well with the Crank–Nicholson results, the
results of this study capture all of the oscillations in the wave function.

The probability of finding a particle somewhere in a given region must be unity at all times. This condition demands the
proper normalization of the wave packet at all times [29]. Quantum hydrodynamic solutions must ultimately satisfy the
Schrödinger equation and thus must also be properly normalized. A difficulty arises because the solutions to the (quantum)
hydrodynamic equations are not analytic but numerical. Therefore, an exact normalized solution is out of the question. A
convergent solution of some kind is most favorable possibility. Limitations on the accuracy of numerical solutions are inher-
ent in any calculation because of the accuracy of the machine, error build-up by propagation through multiple iterations, due
to truncation and round off, and the accuracy of the numerical method. However, if the initial wave packet is normalized
properly, then periodic checks to track the normalization as time evolves can effectively yield the accuracy of the calculation.

Fig. 6 plots the normalization of the wave packet for E = 0.8 eV in the MOC approach using the methodology discussed in
Section 3. A grid spacing of Dx = 0.03a0 was used. The normalization of the wave packet at each time step is computed using
Norm ¼

R rN
r1
j wðx; tÞj2dx and a Romberg integration scheme. The normalization of the wave packet remains close to unity

through the propagation and the deviations from 1.0 are always smaller less than 3 � 10�4.
ters for 1D wave packet motion with downhill ramp potential.

rier height) 0.992 (eV)
4a�2

0 ða0 is Bohr radius)
0.8 (eV)

s) 2000 (a.u), 1 (a.u) = 9.109 � 10�31 kg
al wave packet center) 0.0a0

ial velocity) 0.00542626
0.03
0.05



Fig. 5. Probability density of free particle in motion under downhill ramp potential at several time steps for E = 0.8 eV. The red lines represent the numerical
solution to the Schrödinger equation and black lines represent the numerical solution using the QFD formulation. (For interpretation of the references in
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Normalization of wave packet under Eckart potential (red line) and downhill ramp potential (green line) as function of time for E = 0.8 eV in the MOC
approach. (For interpretation of the references in colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
Parameters for 2D wave packet motion with downhill ramp potential.

V1 �0.5
V2 0.01
bx 8a�2

0 ða0 is Bohr radius)
by 8a�2

0
Energy 0.8 (eV)
m (mass) 2000 (a.u) 1 (a.u) = 9.109 � 10�31 kg
(x0,y0) (initial wave packet center) (0,0)
xb (the location of the barrier maximum) 7.0a0

u0 (initial velocity) 0.00542626
v0 (initial velocity) 0
dx 0.03
dy 0.03
dt 0.05
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B. Two-dimensional particle motion in downhill ramp potential

The application in this section is the propagation of a 2D Gaussian wave packet under the downhill ramp potential is
given by
Vðx; yÞ ¼ V1

1þ e�2:5ðx�1Þ þ
1
2

V2y2 2
1þ e2:5ðx�1Þ þ

2
1þ e�2:5ðx�1Þ

� �
ð37Þ
In Fig. 3, V1 < 0 and V2 > 0. This potential, for example, may represent the relaxation of a molecule’s vibration during an exo-
thermic reaction. Two-dimensional potentials are generally not separable in coordinates, so the resulting Schrödinger equa-
tion is also not separable. The downhill ramp potential in Eq. (32) provides an example of this inseparability. Since the
Schrödinger equation is not separable, it has no analytic solution, and numerical methods must be adopted.

Table 3 specifies the initial condition used in the simulation.
The two-dimensional Schrödinger equation including the downhill ramp potential is
i�h
owðx; yÞ

ot
¼ � �h2

2m
o2w
ox2 þ

o2w
oy2

 !
þ Vwðx; yÞ ð38Þ
Converting this to a non-dimensional form results in
i
ow
os
¼ � T0�h

2m
1
a2

0

o2w
o�x2 þ

o2w
o�y2

 !
þ T0

�h
V1

ð1þ exp�1:5ð�x�1:0ÞÞ þ
1
2

V2�y2 2
ð1þ exp2:5ð�x�1:0ÞÞ þ

1
ð1þ exp�2:5ð�x�1:0ÞÞ

� �� �
w ð39Þ



Fig. 7. Probability density of wave packet in motion under 2D downhill ramp potential at several time steps for E = 0.8 eV. Initial velocity u0 = 0.005424.
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The corresponding continuity and x-component momentum equations, written in fluid dynamics formulation are,
respectively,
oq
os
þ oq�u

o�x
þ oq�v

o�y
¼ 0 ð40Þ



Fig. 8. Probability density of wave packet in motion under 2D downhill ramp potential at several time steps for E = 0.8 eV. Initial velocity u0 = �0.005424.

C.-T. Lin et al. / Journal of Computational Physics 228 (2009) 1713–1732 1725
oq�u
os
þ oðq�u2Þ

o�x
þ oðquvÞ

o�y
� �h2

2m2
aa2

0u2
c

q
o

o�x
q�1=2 o2q1=2

o�x2 þ o2q1=2

o�y2

 !" #

þ 1
mu2

c
q

o

o�x
V1

ð1þ exp�1:5ð�x�1:0ÞÞ þ
1
2

V2�y2 2
ð1þ exp2:5ð�x�1:0ÞÞ þ

1
ð1þ exp�2:5ð�x�1:0ÞÞ

� �� �
¼ 0 ð41Þ



Fig. 9. The amplitude of probability density and the quantum force obtained from the minimum setup probability density using the numerical simulation.
(a) q = 10�5 and (b) q = 10�12 1D wave packet motion with Eckart potential at time = 121(fs).
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The y-component momentum equation is
oq�v
os
þ oðquvÞ

o�x
þ oðq�v2Þ

o�y
� �h2

2m2
aa2

0u2
c

q
o

o�y
q�1=2 o2q1=2

o�x2 þ o2q1=2

o�y2

 !" #

þ 1
mu2

c
q

o

o�y
V1

ð1þ exp�1:5ð�x�1:0ÞÞ þ
1
2

V2�y2 2
ð1þ exp2:5ð�x�1:0ÞÞ þ

1
ð1þ exp�2:5ð�x�1:0ÞÞ

� �� �
¼ 0 ð42Þ
Fig. 7 plots the time-development of the QFD formulation in the downhill ramp potential with the initial velocity in the
positive x-direction, and Fig. 8 plots the time-development with the initial velocity in the negative x-direction.

Another interesting feature of the quantum flow fields in the presence of the singularities at the position of the vanishing
wave function or density probability density, is the divergence of both dilatation and diffusion kinetic energy, which phe-
nomenon is similar to that associated with the expansion of the fluid to the vacuum state in classical fluid flow. A force
pushes a wave forward in a quantum potential force, as numerically simulated waves pass through external potential ener-
gies, in the area of approximately zero probability density, the quantum potential variation increases, causing calculation
errors in the quantum hydrodynamic simulations. Hence, in the numerical simulation, to maintain the calculation accuracy,
the minimum probability density must be set, although this setting dominates the accuracy of the simulation and, as the
simulation time increases, the accumulated errors become unable to converge. This work, discusses the effect of the singu-
larity. Fig. 9 present the results of the amplitude probability density and quantum potential force obtained from the mini-



Fig. 10. The amplitude of probability density and the quantum force obtained from the minimum setup probability density using the numerical simulation.
(a) q = 10�5 and (b) q = 10�12 2D wave packet motion with downhill ramp potential.
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mum setup probability density using the numerical scheme. The change in the quantum potential in Fig. 9b1 exceeds that in
Fig. 9a1, because the minimum density in Fig. 9b1 is smaller than that in Fig. 9a1. However, the variation in the effect of the



Table 4
Parameters of QFD simulation for double-slit jet.

b (slit width) 100 nm
⁄ (plank constant reduced) 1.055 � 10�34 (Js)
T0 0.0242 (fs)
m (electron mass) 1 (a.u) = 9.109 � 10�31 kg
�u0 (initial velocity) 0.013831, 0.027662, 0.041494, 0.055325, 0.069157, 0.1383

(N = 10, 20, 30, 40, 50, 100)
v0 (initial velocity) 0
d�x 0.03
d�y 0.03
ds 0.001–0.01 (for various N)

Characteristic velocity = b/(pT0).
All units are atomic unit (a.u.) (1 a.u. = 0.0242 fs); 1 eV = 1.602 � 10�19 J; a0 = 0.529 � 10�10 m.
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Fig. 11. Boundary conditions for probability density and momentum flux. q, qu, qv.

Fig. 12. Probability density and momentum flux distribution at x = 0.0 use in numerical simulation.
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quantum force is very small. When the minimum density is set to 10�5 or 10�12 herein, from the red line of the Fig. 9, the
wave propagation of probability density maintain stable, indicating the scheme proposed herein can be adopted successfully
the variation in value associated caused by potential energy.

Fig. 10 plots the amplitude contours of probability density for two-dimensional free particle motion in downhill ramp
potential. This advantage can reduce the calculation error that is caused by the regridding algorithm in the ALE frame.



Fig. 13. (a) Contour of probability density for N = 10 obtained by QFD simulation at time = 23.2 fs. (b) Contour of the probability density for N = 30 obtained
by QFD simulation at time = 20.8 fs. (c) Contour of probability density for N = 50 obtained by QFD simulation at time = 9.1 fs. (d) Contour of probability
density for N = 60 obtained by QFD simulation at time = 8.47 fs. (e) Contour of probability density for N = 100 obtained by QFD simulation at time = 4.69 fs.
(f) Contour of probability density for N = 200 obtained by QFD simulation at time = 2.52 fs.

C.-T. Lin et al. / Journal of Computational Physics 228 (2009) 1713–1732 1729
C. Double-slit jet

Quantum mechanics among the nano technology community has received increasing interest in recent years [30]. Quan-
tum nanojets of atoms, molecules, or charged particles are anticipated to have new and important roles in nano-engineering
[8–10,30,31]. The structural and dynamic variations of the jets are very complex. Such nanojets must be numerically simu-
lated for some applications with complex boundary conditions and an external potential. In this section, solutions for dou-
ble-slit jets are obtained using numerical approaches to investigate the nature of structural and dynamic variations of the
nanojets in terms of quantum Reynolds number.

To obtain a solution for the two-dimensional two-slit quantum nanojet, the following reference quantities are treated as
characteristic quantities of interest
�x ¼ x
b=p

; �y ¼ y
b=p

; s ¼ t
T0
; �u ¼ u

U
; �v ¼ v

U
; U ¼ b=p

T0
where T0 is a characteristic time, b is half the distance between slits. U is the characteristic velocity, ⁄/kme. Table 4 presents
the parameters of QFD simulation.

In this system of reduced units the continuity equation, and the equations for the x- and y- components of momentum,
respectively, become
oq
os þ

oq�u
o�x
þ oq�v

o�y
¼ 0 ð43Þ



Fig. 13. (continued)
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oq�u
os
þ oðq�u2Þ

o�x
þ oðquvÞ

o�y
� 1

2N2 q
o

o�x
q�1=2 o2q1=2

o�x2 þ o2q1=2

o�y2

 !" #
¼ 0 ð44Þ

oq�v
os þ

oðquvÞ
o�x

þ oðq�v2Þ
o�y

� 1
2N2 q

o

o�y
q�1=2 o2q1=2

o�x2 þ o2q1=2

o�y2

 !" #
¼ 0 ð45Þ
where N is quantum Reynolds number
N2 ¼ 2meE

�h2

b2

p2 ¼
m2

e U2

�h2

b2

p2

 !
ð46Þ
The boundary conditions at the exit of the quantum nanojet (x = 0) are given as
qð0; �yÞ ¼
q0 0:6 6 �y 6 1:0
0 otherwise

�
ð47Þ

�uð0; �yÞ ¼
�u0 0:6 6 �y 6 1:0
0 otherwise

�
ð48Þ

�vð0; �yÞ ¼ 0; y > 0 ð49Þ
Figs. 11 and 12 present the boundary conditions and the probability density distribution at x = 0.0.
Fig. 13 plots a series of contour map of the probability density for various values of N. Fig. 14 shows the contour

probability density for N = 10, 50, 100. The contour results reveal small differences between the results obtained using



Fig. 14. Contours of probability density for (a) N = 10, (b) N = 50 and (c) N = 100 obtained from QFD solution and analysis at time = 23.2 fs, 9.1 fs, and 4.69 fs.
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the analytical and numerical methods. These differences arise simply because the boundary conditions on the probability
density distributions are not exactly equal. In the analytical approach a step function is used as the probability density
distribution at x = 0, and in the QFD simulation, a Gaussian distribution is adopted (Fig. 12). Accordingly, the velocity in
the y-direction is smaller near the exit jet and the branching angle is smaller in the QFD simulation.

5. Conclusions

This work presents a novel method for solving quantum hydrodynamic equations of motion. The proposed scheme is
based on a control volume technique and the monotone upwind-centered schemes for conservation laws (MUSCL) method
is adopted to interpolate the changes in cell properties that occur during flow simulation. As nodes begin to form in the
reflected part of the wave package, the quantum potential and force become large and numerical instabilities can arise. A
third-order modified Osher–Chakravarthy (MOC) upwind scheme was introduced to obtain the convective terms of the
hydrodynamic equations and a second-order central finite volume scheme was used to map the quantum potential field.
The scheme successfully prevents the numerical instabilities that are associated with node formation and enables the stable
propagation of the wave packet for very long times. The numerical results agree closely with theoretical and other numerical
solutions.

The proposed method was applied to a one- and two-dimensional wave packet from a repulsive Eckart barrier and a
downhill ramp potential. This problem is intractable using the de Broglie–Bohm formulation of quantum mechanics. The re-
sults computed using this approach excellently with those computed using the Crank–Nicholson approach. The accuracy of
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the wave function was also investigated. A significant result of these calculations is the stable and unitary propagation of the
wave packet fro very long times. Additionally, this numerical technique to quantum-slit jets applied to more application. The
presented numerical scheme is highly accurate both temporally and spatially and can solve problems of the quantum hydro-
dynamic motion.

The de Broglie–Bohm approach is a highly attractive means of solving quantum mechanical problems. However, the intrin-
sic numerical difficulties associated with this approach must be overcome. The results herein the external potential battier are
encouraging and all of the adopted herein are applicable to higher dimensions. Results of this study contribute to efforts to
yield a computationally efficient method for treating unclear motion in chemical reactions that involve many atoms.
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